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The cue ball trajectory is based on the equations derived in TP A.4. See TP A.4 for
Equation number references and background information.
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The cue ball is assumed to be struck in the y direction with the angled impulse as shown
above. From linear impulse and momentum, the initial cue ball speed components, after cue
stick impact, are:

v, =0 (1)

Vo = Hcos(¢) =V, cos(¢) (2)

where v, is the effective speed of a straight-on impact.

From angular impulse and momentum, the spin components of the cue ball about the x and y
axes, after cue stick impact, are related to the impulse according to:

Eb=lw, - (ngijXO 3)
Fasin(g)=lo —(Emsza) (4)
- yo — 5 yo

Therefore, the initial spin components, using Equation 2, can be written as:

_ 5y,
Wyo = 2R2 (5)
o, _ .
Oy =0 asin(g) ©)

We can now find the final cue ball direction from Equation 23 in TP A.4:

ov, _ .
_5Vx0+2Rwy0 . 0+ R aS|n(¢) _ aSin(¢)

_ TR (7)
5,0 ~2R% 5y cos(g)- ;/; b Reos(g)-b

tan(4, )

As proved by Coriolis, the final cue ball direction can also be predicted from the geometry
shown in the illustration above. From the top view, the final cue ball direction can be
expressed as:

tan(6, )= -2 ®)
RA



From the side view in the illustration above, it can be shown (see the figure below) that:

R cos(¢) = b+ RAsin(g) 9)

Equation 9 can be rearranged to give:

——  Rcos(¢)-b
)

Using Equation 10 in Equation 8 results in the same expression as Equation 7. Therefore, the
aiming method proposed by Coriolis is shown to be valid. Note that the friction between the
ball and the table during cue stick impact is is not accounted for in this analysis, but Coriolis
also showed that this friction has no effect on the final cue ball direction.

(10)

With typical conditions, the final CB angle usually comes up a little short of the angle
predicted by the Coriolis method. This could be due in part to squirt and multiple-body
collision effects associated with jamming the cue ball between the tip and slate.

Now we can define the cue ball trajectory based on the analyses above and in TP A.4.

NOTE: All parameters are expressed in metric (SI) equivalent values for dimensionless analysis

ball properties:
2.25-in D
D:= R.=—

D = 0.057

m M9

coefficient of friction between the cue ball and table cloth:

pi= 0.2

gravity

A= g = 9.807

wN|3 |@



From Equation 1, 2, 5, and 6 above,
5:Vg

Vyo =0 wxo(ve,b) = —2-b
2R
5Vg )
Vyo(Verd’) = Vg COS(d) wyo(Ve’a»‘b) = Ea-sm(d))

From Equation 14 in TP A.4,
vCOX(ve,a,b,q)) = Vyg — R-wyo(ve,a,q>)

vCoy(ve,a,b,d)) = vyo(ve,d)) + R~wx0(ve,b)

vCo(ve,a,b,q)) = \/VCox(Ve’a»b’d’)z + vCOy(ve,a,b,q>)2

From Equation 20 in TP A.4,

2~vC0(ve,a, b, (1))
7-p-g

At(ve,a,b,(b) =

From Equations 21 and 22 in TP A.4,

VCox(Ve .a,b, d’)

Nedvane) S

vxf(ve,a,b,q)) = Vyo — WO

VCoy(Ve ,a,b, ¢)

S fieane) e

vyf(ve,a,b,d)) = Vyo(vea‘b) -
From Equations 24 and 25 in TP A.4,

“'g'VCox(Ve’a’b’q)) 2
2'VC0(Ve’ a, b,d))

xc(ve,a,b,q),t) = Vygt —

~ H'g'VCoy(Ve’a’b’d’) 2
2-vC0(ve,a, b,cb)

yc(ve,a, b,d),t) = Vyo(Vea d))-t



From the analysis in TP A.4, the entire cue ball path is defined by:

X(Ve-a.b,0.t) = | AT « At(vg.a,b.9)
xc(ve,a,b,q),t) if t<AT
[xc(ve,a,b,cb,AT) + vxf(ve,a,b,(b)-(t - AT)] otherwise

y(Ve-a.b.0.t) = | AT « At(vg.a,b.9)
Yo(Ve-a:b,d,t) if t<AT

[yc(ve,a,b,cb,AT) + vyf(ve,a,b,(b)-(t - AT)] otherwise

From Equation 7 above, the final cue ball angle can be found with:

0c(a,b, d) := angle(R-cos(d) — b,a-sin(¢))

Parameters used in plots below:

J=5 number of seconds to display

t:=0,0.01..T 0.01 second plotting increment
Equation for the final direction: Equation for the ball (for scale)
t t m
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various effective impact speeds (in mph, converted to m/s):
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¢ := 75-deg a:=0.25R b= 0.25-R
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Comparison of draw and follow shot swerve for a medium-fast-speed shot under

typical ball and table conditions:

6-mph ; .

Vi ——— a:= 0.5-R-cos(45-deg) same amount of English for both:

m 1:30pm (follow) or 4:30pm (draw)
S

bdraw = @ btollow == @ same amount of top or bottom spin for both

Draw = 4-deg Dfollow = 3-deg slightly higher cue elevation for the draw shot,
but typical values

Xaim(t)

initial aiming line with a typical amount of squirt (2 degrees):
i (t) = ———
Yaim(®) tan(2-deg)
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The draw shot exhibits more "effective squirt” (the net effect of both squirt and swerve, AKA

squerve) over the shorter shot distances; but, over longer shot distances, the follow shot
exhibits more "effective squirt." The crossover distance depends on shot speed and ball/table

conditions.
Here are the final cue-ball trajectory angles after sliding ceases and rolling begins:
ec(z"’bfollowrd’follow) = 0.784 deg

ec(z"’bdraqu’draw) = 2.193deg



Final cue ball angle for various cue stick elevations:
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